Copied to
clipboard

G = C4228D14order 448 = 26·7

28th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4228D14, C14.802+ 1+4, C41D49D7, (C2×D4)⋊13D14, (C4×C28)⋊37C22, C23⋊D1428C2, (D4×C14)⋊34C22, C422D719C2, Dic7⋊D439C2, (C2×C28).638C23, (C2×C14).264C24, Dic7⋊C437C22, D14⋊C4.75C22, C23.D738C22, C2.84(D46D14), C23.70(C22×D7), C75(C22.54C24), (C22×C14).78C23, (C23×D7).73C22, C22.285(C23×D7), C23.18D1428C2, (C2×Dic7).138C23, (C22×Dic7)⋊30C22, (C22×D7).118C23, (C7×C41D4)⋊15C2, (C2×C4).216(C22×D7), (C2×C7⋊D4).80C22, SmallGroup(448,1173)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4228D14
C1C7C14C2×C14C22×D7C23×D7C23⋊D14 — C4228D14
C7C2×C14 — C4228D14
C1C22C41D4

Generators and relations for C4228D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=a-1, dad=a-1b2, cbc-1=b-1, dbd=a2b, dcd=c-1 >

Subgroups: 1356 in 252 conjugacy classes, 91 normal (12 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, C23, D7, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C24, Dic7, C28, D14, C2×C14, C2×C14, C22≀C2, C4⋊D4, C22.D4, C422C2, C41D4, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C7×D4, C22×D7, C22×D7, C22×C14, C22×C14, C22.54C24, Dic7⋊C4, D14⋊C4, C23.D7, C4×C28, C22×Dic7, C2×C7⋊D4, D4×C14, C23×D7, C422D7, C23.18D14, C23⋊D14, Dic7⋊D4, C7×C41D4, C4228D14
Quotients: C1, C2, C22, C23, D7, C24, D14, 2+ 1+4, C22×D7, C22.54C24, C23×D7, D46D14, C4228D14

Smallest permutation representation of C4228D14
On 112 points
Generators in S112
(1 95 19 88)(2 89 20 96)(3 97 21 90)(4 91 15 98)(5 85 16 92)(6 93 17 86)(7 87 18 94)(8 84 22 77)(9 78 23 71)(10 72 24 79)(11 80 25 73)(12 74 26 81)(13 82 27 75)(14 76 28 83)(29 52 111 60)(30 61 112 53)(31 54 99 62)(32 63 100 55)(33 56 101 64)(34 65 102 43)(35 44 103 66)(36 67 104 45)(37 46 105 68)(38 69 106 47)(39 48 107 70)(40 57 108 49)(41 50 109 58)(42 59 110 51)
(1 112 12 105)(2 106 13 99)(3 100 14 107)(4 108 8 101)(5 102 9 109)(6 110 10 103)(7 104 11 111)(15 40 22 33)(16 34 23 41)(17 42 24 35)(18 36 25 29)(19 30 26 37)(20 38 27 31)(21 32 28 39)(43 78 58 85)(44 86 59 79)(45 80 60 87)(46 88 61 81)(47 82 62 89)(48 90 63 83)(49 84 64 91)(50 92 65 71)(51 72 66 93)(52 94 67 73)(53 74 68 95)(54 96 69 75)(55 76 70 97)(56 98 57 77)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 25)(2 24)(3 23)(4 22)(5 28)(6 27)(7 26)(8 15)(9 21)(10 20)(11 19)(12 18)(13 17)(14 16)(29 30)(31 42)(32 41)(33 40)(34 39)(35 38)(36 37)(43 63)(44 62)(45 61)(46 60)(47 59)(48 58)(49 57)(50 70)(51 69)(52 68)(53 67)(54 66)(55 65)(56 64)(71 83)(72 82)(73 81)(74 80)(75 79)(76 78)(85 97)(86 96)(87 95)(88 94)(89 93)(90 92)(99 110)(100 109)(101 108)(102 107)(103 106)(104 105)(111 112)

G:=sub<Sym(112)| (1,95,19,88)(2,89,20,96)(3,97,21,90)(4,91,15,98)(5,85,16,92)(6,93,17,86)(7,87,18,94)(8,84,22,77)(9,78,23,71)(10,72,24,79)(11,80,25,73)(12,74,26,81)(13,82,27,75)(14,76,28,83)(29,52,111,60)(30,61,112,53)(31,54,99,62)(32,63,100,55)(33,56,101,64)(34,65,102,43)(35,44,103,66)(36,67,104,45)(37,46,105,68)(38,69,106,47)(39,48,107,70)(40,57,108,49)(41,50,109,58)(42,59,110,51), (1,112,12,105)(2,106,13,99)(3,100,14,107)(4,108,8,101)(5,102,9,109)(6,110,10,103)(7,104,11,111)(15,40,22,33)(16,34,23,41)(17,42,24,35)(18,36,25,29)(19,30,26,37)(20,38,27,31)(21,32,28,39)(43,78,58,85)(44,86,59,79)(45,80,60,87)(46,88,61,81)(47,82,62,89)(48,90,63,83)(49,84,64,91)(50,92,65,71)(51,72,66,93)(52,94,67,73)(53,74,68,95)(54,96,69,75)(55,76,70,97)(56,98,57,77), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,25)(2,24)(3,23)(4,22)(5,28)(6,27)(7,26)(8,15)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(29,30)(31,42)(32,41)(33,40)(34,39)(35,38)(36,37)(43,63)(44,62)(45,61)(46,60)(47,59)(48,58)(49,57)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64)(71,83)(72,82)(73,81)(74,80)(75,79)(76,78)(85,97)(86,96)(87,95)(88,94)(89,93)(90,92)(99,110)(100,109)(101,108)(102,107)(103,106)(104,105)(111,112)>;

G:=Group( (1,95,19,88)(2,89,20,96)(3,97,21,90)(4,91,15,98)(5,85,16,92)(6,93,17,86)(7,87,18,94)(8,84,22,77)(9,78,23,71)(10,72,24,79)(11,80,25,73)(12,74,26,81)(13,82,27,75)(14,76,28,83)(29,52,111,60)(30,61,112,53)(31,54,99,62)(32,63,100,55)(33,56,101,64)(34,65,102,43)(35,44,103,66)(36,67,104,45)(37,46,105,68)(38,69,106,47)(39,48,107,70)(40,57,108,49)(41,50,109,58)(42,59,110,51), (1,112,12,105)(2,106,13,99)(3,100,14,107)(4,108,8,101)(5,102,9,109)(6,110,10,103)(7,104,11,111)(15,40,22,33)(16,34,23,41)(17,42,24,35)(18,36,25,29)(19,30,26,37)(20,38,27,31)(21,32,28,39)(43,78,58,85)(44,86,59,79)(45,80,60,87)(46,88,61,81)(47,82,62,89)(48,90,63,83)(49,84,64,91)(50,92,65,71)(51,72,66,93)(52,94,67,73)(53,74,68,95)(54,96,69,75)(55,76,70,97)(56,98,57,77), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,25)(2,24)(3,23)(4,22)(5,28)(6,27)(7,26)(8,15)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(29,30)(31,42)(32,41)(33,40)(34,39)(35,38)(36,37)(43,63)(44,62)(45,61)(46,60)(47,59)(48,58)(49,57)(50,70)(51,69)(52,68)(53,67)(54,66)(55,65)(56,64)(71,83)(72,82)(73,81)(74,80)(75,79)(76,78)(85,97)(86,96)(87,95)(88,94)(89,93)(90,92)(99,110)(100,109)(101,108)(102,107)(103,106)(104,105)(111,112) );

G=PermutationGroup([[(1,95,19,88),(2,89,20,96),(3,97,21,90),(4,91,15,98),(5,85,16,92),(6,93,17,86),(7,87,18,94),(8,84,22,77),(9,78,23,71),(10,72,24,79),(11,80,25,73),(12,74,26,81),(13,82,27,75),(14,76,28,83),(29,52,111,60),(30,61,112,53),(31,54,99,62),(32,63,100,55),(33,56,101,64),(34,65,102,43),(35,44,103,66),(36,67,104,45),(37,46,105,68),(38,69,106,47),(39,48,107,70),(40,57,108,49),(41,50,109,58),(42,59,110,51)], [(1,112,12,105),(2,106,13,99),(3,100,14,107),(4,108,8,101),(5,102,9,109),(6,110,10,103),(7,104,11,111),(15,40,22,33),(16,34,23,41),(17,42,24,35),(18,36,25,29),(19,30,26,37),(20,38,27,31),(21,32,28,39),(43,78,58,85),(44,86,59,79),(45,80,60,87),(46,88,61,81),(47,82,62,89),(48,90,63,83),(49,84,64,91),(50,92,65,71),(51,72,66,93),(52,94,67,73),(53,74,68,95),(54,96,69,75),(55,76,70,97),(56,98,57,77)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,25),(2,24),(3,23),(4,22),(5,28),(6,27),(7,26),(8,15),(9,21),(10,20),(11,19),(12,18),(13,17),(14,16),(29,30),(31,42),(32,41),(33,40),(34,39),(35,38),(36,37),(43,63),(44,62),(45,61),(46,60),(47,59),(48,58),(49,57),(50,70),(51,69),(52,68),(53,67),(54,66),(55,65),(56,64),(71,83),(72,82),(73,81),(74,80),(75,79),(76,78),(85,97),(86,96),(87,95),(88,94),(89,93),(90,92),(99,110),(100,109),(101,108),(102,107),(103,106),(104,105),(111,112)]])

61 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D···4I7A7B7C14A···14I14J···14U28A···28R
order12222222224444···477714···1414···1428···28
size11114444282844428···282222···28···84···4

61 irreducible representations

dim11111122244
type++++++++++
imageC1C2C2C2C2C2D7D14D142+ 1+4D46D14
kernelC4228D14C422D7C23.18D14C23⋊D14Dic7⋊D4C7×C41D4C41D4C42C2×D4C14C2
# reps1233613318318

Matrix representation of C4228D14 in GL8(𝔽29)

516000000
1324000000
005160000
0013240000
000000280
000000028
00001000
00000100
,
102700000
010270000
102800000
010280000
000091400
0000152000
000000914
0000001520
,
2121000000
826000000
2121880000
8262130000
0000101000
0000192200
0000001919
000000107
,
88000000
321000000
00880000
003210000
0000191900
000071000
0000001010
0000002219

G:=sub<GL(8,GF(29))| [5,13,0,0,0,0,0,0,16,24,0,0,0,0,0,0,0,0,5,13,0,0,0,0,0,0,16,24,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0],[1,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,27,0,28,0,0,0,0,0,0,27,0,28,0,0,0,0,0,0,0,0,9,15,0,0,0,0,0,0,14,20,0,0,0,0,0,0,0,0,9,15,0,0,0,0,0,0,14,20],[21,8,21,8,0,0,0,0,21,26,21,26,0,0,0,0,0,0,8,21,0,0,0,0,0,0,8,3,0,0,0,0,0,0,0,0,10,19,0,0,0,0,0,0,10,22,0,0,0,0,0,0,0,0,19,10,0,0,0,0,0,0,19,7],[8,3,0,0,0,0,0,0,8,21,0,0,0,0,0,0,0,0,8,3,0,0,0,0,0,0,8,21,0,0,0,0,0,0,0,0,19,7,0,0,0,0,0,0,19,10,0,0,0,0,0,0,0,0,10,22,0,0,0,0,0,0,10,19] >;

C4228D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{28}D_{14}
% in TeX

G:=Group("C4^2:28D14");
// GroupNames label

G:=SmallGroup(448,1173);
// by ID

G=gap.SmallGroup(448,1173);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,219,1571,570,297,136,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a^-1*b^2,c*b*c^-1=b^-1,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽